p-group, metabelian, nilpotent (class 2), monomial
Aliases: C22.70C25, C23.129C24, C24.500C23, C42.567C23, C4.1862+ 1+4, C4○2D42, D42⋊27C2, D4○3(C4×D4), C4⋊Q8⋊88C22, C4○3(D4⋊5D4), D4⋊11(C4○D4), D4⋊5D4⋊44C2, C4○3(D4⋊3Q8), D4⋊3Q8⋊49C2, (C4×Q8)⋊98C22, (C4×D4)⋊110C22, C4⋊C4.479C23, C4⋊D4⋊77C22, (C2×C4).601C24, (C23×C4)⋊37C22, (C2×C42)⋊55C22, C22⋊Q8⋊92C22, C22≀C2⋊33C22, (C2×D4).297C23, C4.4D4⋊77C22, C22⋊C4.92C23, (C2×Q8).282C23, C42.C2⋊51C22, C22.19C24⋊19C2, C42⋊2C2⋊33C22, C42⋊C2⋊29C22, C4⋊1D4.183C22, (C22×C4).619C23, C4○2(C22.45C24), C22.45C24⋊28C2, C2.24(C2×2+ 1+4), C22.26C24⋊31C2, (C22×D4).596C22, C22.D4⋊47C22, C4○2(C22.53C24), C4○3(C22.47C24), C22.53C24⋊29C2, C22.47C24⋊45C2, C23.36C23⋊23C2, (C2×C4×D4)⋊89C2, (C4×C4○D4)⋊23C2, C4.272(C2×C4○D4), (C2×C4⋊C4)⋊140C22, (C2×C4○D4)⋊21C22, C2.41(C22×C4○D4), C22.39(C2×C4○D4), (C2×C22⋊C4)⋊89C22, (C2×C4)○(C22.53C24), (C2×C4)○(C22.47C24), SmallGroup(128,2213)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.70C25
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=e2=f2=1, g2=ba=ab, dcd=ac=ca, fdf=ad=da, ae=ea, af=fa, ag=ga, ece=bc=cb, bd=db, be=eb, bf=fb, bg=gb, cf=fc, cg=gc, de=ed, dg=gd, ef=fe, eg=ge, fg=gf >
Subgroups: 956 in 621 conjugacy classes, 400 normal (16 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, C2×C4, D4, D4, Q8, C23, C23, C23, C42, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, C2×C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C4×D4, C4×Q8, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C42.C2, C42⋊2C2, C4⋊1D4, C4⋊Q8, C23×C4, C22×D4, C2×C4○D4, C2×C4×D4, C4×C4○D4, C22.19C24, C23.36C23, C22.26C24, D42, D4⋊5D4, C22.45C24, C22.47C24, D4⋊3Q8, C22.53C24, C22.70C25
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, 2+ 1+4, C25, C22×C4○D4, C2×2+ 1+4, C22.70C25
(1 9)(2 10)(3 11)(4 12)(5 30)(6 31)(7 32)(8 29)(13 20)(14 17)(15 18)(16 19)(21 28)(22 25)(23 26)(24 27)
(1 11)(2 12)(3 9)(4 10)(5 32)(6 29)(7 30)(8 31)(13 18)(14 19)(15 20)(16 17)(21 26)(22 27)(23 28)(24 25)
(1 27)(2 28)(3 25)(4 26)(5 17)(6 18)(7 19)(8 20)(9 24)(10 21)(11 22)(12 23)(13 29)(14 30)(15 31)(16 32)
(1 19)(2 20)(3 17)(4 18)(5 22)(6 23)(7 24)(8 21)(9 16)(10 13)(11 14)(12 15)(25 30)(26 31)(27 32)(28 29)
(5 32)(6 29)(7 30)(8 31)(21 26)(22 27)(23 28)(24 25)
(1 11)(2 12)(3 9)(4 10)(5 7)(6 8)(13 15)(14 16)(17 19)(18 20)(21 26)(22 27)(23 28)(24 25)(29 31)(30 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
G:=sub<Sym(32)| (1,9)(2,10)(3,11)(4,12)(5,30)(6,31)(7,32)(8,29)(13,20)(14,17)(15,18)(16,19)(21,28)(22,25)(23,26)(24,27), (1,11)(2,12)(3,9)(4,10)(5,32)(6,29)(7,30)(8,31)(13,18)(14,19)(15,20)(16,17)(21,26)(22,27)(23,28)(24,25), (1,27)(2,28)(3,25)(4,26)(5,17)(6,18)(7,19)(8,20)(9,24)(10,21)(11,22)(12,23)(13,29)(14,30)(15,31)(16,32), (1,19)(2,20)(3,17)(4,18)(5,22)(6,23)(7,24)(8,21)(9,16)(10,13)(11,14)(12,15)(25,30)(26,31)(27,32)(28,29), (5,32)(6,29)(7,30)(8,31)(21,26)(22,27)(23,28)(24,25), (1,11)(2,12)(3,9)(4,10)(5,7)(6,8)(13,15)(14,16)(17,19)(18,20)(21,26)(22,27)(23,28)(24,25)(29,31)(30,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)>;
G:=Group( (1,9)(2,10)(3,11)(4,12)(5,30)(6,31)(7,32)(8,29)(13,20)(14,17)(15,18)(16,19)(21,28)(22,25)(23,26)(24,27), (1,11)(2,12)(3,9)(4,10)(5,32)(6,29)(7,30)(8,31)(13,18)(14,19)(15,20)(16,17)(21,26)(22,27)(23,28)(24,25), (1,27)(2,28)(3,25)(4,26)(5,17)(6,18)(7,19)(8,20)(9,24)(10,21)(11,22)(12,23)(13,29)(14,30)(15,31)(16,32), (1,19)(2,20)(3,17)(4,18)(5,22)(6,23)(7,24)(8,21)(9,16)(10,13)(11,14)(12,15)(25,30)(26,31)(27,32)(28,29), (5,32)(6,29)(7,30)(8,31)(21,26)(22,27)(23,28)(24,25), (1,11)(2,12)(3,9)(4,10)(5,7)(6,8)(13,15)(14,16)(17,19)(18,20)(21,26)(22,27)(23,28)(24,25)(29,31)(30,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32) );
G=PermutationGroup([[(1,9),(2,10),(3,11),(4,12),(5,30),(6,31),(7,32),(8,29),(13,20),(14,17),(15,18),(16,19),(21,28),(22,25),(23,26),(24,27)], [(1,11),(2,12),(3,9),(4,10),(5,32),(6,29),(7,30),(8,31),(13,18),(14,19),(15,20),(16,17),(21,26),(22,27),(23,28),(24,25)], [(1,27),(2,28),(3,25),(4,26),(5,17),(6,18),(7,19),(8,20),(9,24),(10,21),(11,22),(12,23),(13,29),(14,30),(15,31),(16,32)], [(1,19),(2,20),(3,17),(4,18),(5,22),(6,23),(7,24),(8,21),(9,16),(10,13),(11,14),(12,15),(25,30),(26,31),(27,32),(28,29)], [(5,32),(6,29),(7,30),(8,31),(21,26),(22,27),(23,28),(24,25)], [(1,11),(2,12),(3,9),(4,10),(5,7),(6,8),(13,15),(14,16),(17,19),(18,20),(21,26),(22,27),(23,28),(24,25),(29,31),(30,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)]])
50 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2K | 2L | ··· | 2P | 4A | 4B | 4C | 4D | 4E | ··· | 4T | 4U | ··· | 4AG |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 |
50 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4○D4 | 2+ 1+4 |
kernel | C22.70C25 | C2×C4×D4 | C4×C4○D4 | C22.19C24 | C23.36C23 | C22.26C24 | D42 | D4⋊5D4 | C22.45C24 | C22.47C24 | D4⋊3Q8 | C22.53C24 | D4 | C4 |
# reps | 1 | 4 | 2 | 4 | 4 | 1 | 1 | 4 | 4 | 4 | 2 | 1 | 16 | 2 |
Matrix representation of C22.70C25 ►in GL4(𝔽5) generated by
4 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 4 |
2 | 0 | 0 | 0 |
0 | 2 | 0 | 0 |
0 | 0 | 3 | 0 |
0 | 0 | 0 | 3 |
G:=sub<GL(4,GF(5))| [4,0,0,0,0,4,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,4,0,0,0,0,4],[1,0,0,0,0,4,0,0,0,0,0,1,0,0,1,0],[0,1,0,0,1,0,0,0,0,0,4,0,0,0,0,4],[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,4],[1,0,0,0,0,4,0,0,0,0,4,0,0,0,0,4],[2,0,0,0,0,2,0,0,0,0,3,0,0,0,0,3] >;
C22.70C25 in GAP, Magma, Sage, TeX
C_2^2._{70}C_2^5
% in TeX
G:=Group("C2^2.70C2^5");
// GroupNames label
G:=SmallGroup(128,2213);
// by ID
G=gap.SmallGroup(128,2213);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,477,1430,570,242]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=e^2=f^2=1,g^2=b*a=a*b,d*c*d=a*c=c*a,f*d*f=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e=b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*f=f*c,c*g=g*c,d*e=e*d,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations